2007 Vol. 9, No. 10 1887–1890

Copper-Catalyzed Cyclization of Steroidal Acylaminoacetylenes: Syntheses of Novel 11β-Aryl-17,17-spiro[(4'H,5'-methylene)oxazol]-Substituted Steroids

Chunvang Jin,* Jason P. Burgess, John A. Kepler,* and C. Edgar Cook[†]

Organic and Medicinal Chemistry, Science and Engineering Group, Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709

cjin@rti.org; jak@rti.org

Received February 21, 2007

ABSTRACT

A variety of novel 11β -aryl-17,17-spiro[(4'H,5'-methylene)oxazol]-substituted steroids have been synthesized in moderate to good yields via copper-catalyzed cyclization of acylaminoacetylenes. The best result was obtained with a catalytic amount of Cul in 1:1 benzene–Et₃N at 90 °C for 30 min (Ar = 3,4-difluorophenyl; R = ethyl; 97% yield).

Progesterone, acting primarily via the progesterone receptor (PR), regulates the viability of cells of several different reproductive tissues, including the uterus, breast, cervix, and hypothalamic-pituitary unit.¹ It also has extra-reproductive activities such as effects on the brain, the immune system, the vascular endothelial system, and lipid metabolism. Given the wide array of effects, it is apparent that compounds which mimic some of the effects of progesterone (agonist), antagonize these effects (antagonist), or exhibit mixed effects (partial agonist or mixed agonist—antagonist) can be useful in the treatment of a variety of disease states and conditions.²

Since the discovery of the first competitive progesterone antagonist, mifepristone³ (RU 486, 1, Figure 1), hundreds of analogues have been synthesized to optimize the antiprogestational effect with regard to the steroid receptor selectivity.⁴ It has been shown that substituents on the D-ring

Figure 1. Antiprogestins.

of the steroid can have a marked influence on the biological profile of these compounds. The earliest antiprogestins were substituted with a 17β -hydroxyl group and various 17α -

[†] Dr. C. Edgar Cook is deceased.

⁽¹⁾ Spitz, I. M. Steroids 2003, 68, 981.

⁽²⁾ Chabbert-Buffet, N.; Meduri, G.; Bouchard, P.; Spitz, I. M. Hum. Reprod. Update 2005, 11, 293.

⁽³⁾ Teutsch, G.; Costerousse, G.; Philibert, D.; Deraedt, R. U.S. Patent 4 386 085, 1983.

substituents.⁵ Replacement of these substituents with the progesterone side chain $(17\beta\text{-}acetyl)$ together with a $17\alpha\text{-}acetoxy$ substituent led to RTI-3021-012 (also known as CBD 2914) (2), which is approximately 3 times as potent as mifepristone.⁶ In addition, exchange of the 17-side chain with 17,17-spirocyclic moieties characterized by a sulfur,⁷ nitrogen,⁸ or oxygen⁹ enhanced antiprogestational effects, in some cases, with considerably reduced antiglucocorticoid activities. In fact, one of the most active compounds in this series, ORG 33628 (3), has been claimed to be 16 times as active as RU 486 in the pregnancy interruption test in rats and about 6 times less active as an antiglucocorticoid.¹⁰

Some time ago, we found that various 17β -nitro⁸ and amino substituents¹¹ (e.g., **4a**; Ar = 3,4-difluorophenyl, R = ethyl) could also generate antiprogestational effects. To find highly potent antiprogestins with considerably reduced endocrine side effects, we have continued the investigation of the C(17) modification of **4**. Recently, a variety of oxazolines,¹² benzoxazines,¹³ quinazolin-2-ones, quinazolin-3-ones, and indoles¹⁴ have been successfully synthesized by the palladium-catalyzed or the copper-catalyzed^{14b} cyclization of alkynes having an acylamino group in close proximity to the carbon—carbon triple bond. We now report here the cyclization of ethynes **4** to generate novel spiro-oxazole moieties at the C(17) position.

The key intermediate **4a** for our study was prepared in 24% yield from commercially available 3,3-[1,2-ethanediylbis(oxy)]estra-5(10),9(11)-dien-17-one (**5**) following the reported procedure (Scheme 1).^{8,11} The regioselective 5,10-epoxidation of **5** was achieved by using hexafluoroacetone hydroperoxide generated in situ from hexafluoroacetone trihydrate and hydrogen peroxide to give **6** in 53% yield. The CuI-catalyzed addition of 3,4-difluorophenyl magnesium bromide gave the corresponding Grignard adduct **7** in 92% yield.¹⁵ Oxime formation with hydroxylamine hydrochloride in pyridine provided **8** quantitatively. Teatment of **8** with

N-bromosuccinimide (NBS)¹⁶ gave the 17-bromo-17-nitro compound, which was readily reduced by NaBH₄ to the 17β nitro compound 9 as confirmed by ¹H NMR analysis. The C(17)-H presented a triplet signal at δ 4.34 with a coupling constant of 6.1 Hz, a pattern that is consistent with the usual finding for an α C(17) hydrogen atom. ¹⁷ The 17 α -ethynyl substituent was then introduced into the nitro compound 9 by treatment of the anion of **9** in dimethyl sulfoxide (DMSO) with ethynyllead(IV) triacetate. ¹⁸ 17α -Ethynyl- 17β -nitro compound 10 was isolated as a single diastereoisomer in 81% yield. The stereochemistry at C(17) in 10 was assigned based on comparison of its NMR spectra with that of known compounds.^{8,19} Reduction of **10** with zinc dust at 0 °C gave hydroxylamine 11, which upon treatment with sodium tetraborate, ammonium iron(II) sulfate, and 2-mercaptoethyl ether²⁰ afforded an 82% yield of amine **12**. Finally, acylation with propionyl chloride followed by deketalization and dehydration with trifluoroacetic acid (TFA) provided 11β -

4a

13

1888 Org. Lett., Vol. 9, No. 10, 2007

⁽⁴⁾ Teutsch, G.; Philibert, D. Hum. Reprod. 1994, 9 (1), 12.

⁽⁵⁾ For example: (a) Wiechert, R.; Neef, G. *J. Steroid Biochem.* **1987**, 27, 851. (b) Wehle, H.; Moll, J.; Cato, A. C. B. *Steroids* **1995**, 60, 368. (c) Fuhrmann, U.; Hess-Stumpp, H.; Cleve, A.; Neef, G.; Schwede, W.; Hoffmann, J.; Fritzemeier, K. H.; Chwalisz, K. *J. Med. Chem.* **2000**, 43, 5010

^{(6) (}a) Cook, C. E.; Wani, M. C.; Lee, Y.-W.; Fail, P. A.; Petrow, V. *Life Sci.* **1993**, *52*, 155. (b) Cook, C. E.; Lee, Y.-W.; Wani, M. C.; Fail, P. A.; Petrow, V. *Hum. Reprod.* **1994**, *9* (1), 32.

⁽⁷⁾ Cook, C. E.; Shetty, R. S.; Kepler, J. A.; Lee, D. Y.-W. U.S. Patent 6 043 235, 2000.

⁽⁸⁾ Cook, C. E.; Kepler, J. A.; Shetty, R. S.; Lee, D. Y.-W. U.S. Patent 6 015 805, 2000.

^{(9) (}a) Philibert, D.; Hardy, M.; Gaillard-Moguilewsky, M.; Nique, F.; Tournemine, C.; Nédélec, L. *J. Steroid Biochem.* **1989**, *34*, 413. (b) Nioue, F.; Nedelec, L.; Philibert, D.; Moguilewsky, M. U.S. Patent 4 900 725, 1990.

^{(10) (}a) Kloosterboer, H. J.; Deckers, G. H.; de Gooyer, M. E.; Dijkema, R.; Orlemans, E. O.; Schoonen, W. G. *Ann. N.Y. Acad. Sci.* **1995**, *761*, 192. (b) Kloosterboer, H. J.; Deckers, G. H.; Schoonen, W. G.; Hanssen, R. G.; Rose, U. M.; Verbost, P. M.; Hsiu, J. G.; Williams, R. F.; Hodgen, G. D. *Steroids* **2000**, *65*, 733.

⁽¹¹⁾ Cook, C. E.; Kepler, J. A.; Bartley, G. S. U.S. Patent 6 262 042, 2001.

⁽¹²⁾ Bacchi, A.; Costa, M.; Gabriele, B.; Pelizze, G.; Salerno, G. J. Org. Chem. 2002, 67, 4450.

⁽¹³⁾ Costa, M.; Cà, N. D.; Gabriele, B.; Massera, C.; Salerno, G.; Soliani, M. J. Org. Chem. **2003**, *69*, 2469.

^{(14) (}a) Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace, P. *Synlett* **1997**, 1363. (b) Cacchi, S.; Fabrizi, G.; Parisi, L. M. *Org. Lett.* **2003**, *5*, 3843

⁽¹⁵⁾ Teutsch, G.; Klich, M.; Bouchoux, F.; Cerede, E.; Philibert, D. Steroids 1994, 59, 22.

⁽¹⁶⁾ Patchett, A. A.; Hoffman, F.; Giarrusso, F. F.; Schwam, H.; Arth, G. E. J. Org. Chem. 1962, 27, 3822.

⁽¹⁷⁾ Krohn, K.; Küpke, J. Eur. J. Org. Chem. 1998, 679.

⁽¹⁸⁾ Moloney, M. G.; Pinhey, J. T.; Roche, E. G. J. Chem. Soc., Perkin Trans. 1 1989, 333.

⁽¹⁹⁾ The stereochemistry of 10 was further confirmed based on the NMR studies of the cyclization product 14a.

⁽²⁰⁾ Nambu, Y.; Kijima, M.; Endo, T.; Okawara, M. J. Org. Chem. 1982, 47, 3066.

(3,4-difluorophenyl)-17 α -ethynyl-17 β -[(1-oxopropyl)amino]-estra-4,9-dien-3-one (**4a**) in 87% yield.

An attempt at Sonogashira-type acylation²¹ of the ethynyl group of **4a** with *N*,*N*-dimethylcarbamoyl chloride under standard conditions [Pd(PPh₃)₂Cl₂/PPh₃/CuI/benzene/Et₃N/90 °C²²] led to none of the coupling product. Instead, the major product isolated in 68% yield was identified as **14a** (see below). To determine which of the reagents was essential for this reaction to occur, the cyclization of **4a** was first carried out with 10 mol % of CuI in refluxing benzene for 24 h (eq 1). The cyclization product **14a** was isolated in 30%

yield and a 65% yield of **4a** was recovered (Table 1). The 6-membered regioisomer oxazine was not detected by ¹H

Table 1. Optimization of Cyclization of Acylaminoacetylene **4a**

${ m catalyst}^a$	solvent	temp (°C)	time (h) ^c	% isolated yield
CuI	benzene	80	24	30
CuI	DMF	90	2	${ m trace}^d$
CuI	DMSO	90	2	${f trace}^d$
CuI	$benzene{-}Et_3N$	90	0.5	97
CuI	$benzene{-}Et_3N$	40	24	46
$Pd(OAc)_2$	$benzene{-}Et_3N$	90	1	54
$\mathrm{AgNO}_3{}^b$	$benzene{-}Et_3N$	90	3	84
HgCl_2	$benzene-Et_3N$	90	3	9

 a 10 mol % of catalyst was used. b 1.1 equiv of AgNO₃ was used. c The progress of reaction was monitored by TLC, and the reaction worked up after approximately 100% conversion or after 24 h of reaction time. d Determined by $^1\mathrm{H}$ NMR spectroscopy.

NMR analysis of the crude product mixture. The structure of **14a** was confirmed by NMR studies (Supporting Information), particularly with the aid of 2D proton—proton (gCOSY) and proton—carbon (gHMBC and gHSQC) correlation spectroscopy techniques. The two terminal vinylic protons were clearly evident at δ 4.80 and 4.20 with a coupling constant of 2.5 Hz.

The stereochemistry of **14a** was construed from analysis of the molecular model, energy minimized with the MMFF94 force field in Spartan'04 (Wavefunction, Inc., Irvine, CA) overlaid with key correlations observed in the two-dimensional ROESY NMR spectrum (Figure 2). Strong correlations were observed between vinylic H_a and C(14)-H, and between vinylic H_a and C(16)-H, indicating that

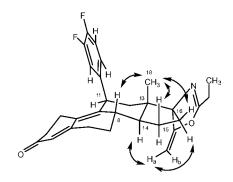


Figure 2. Key ROESY correlations of 14a.

these respective pairs of protons were proximal. In addition, no correlations between vinylic protons and the C(18) methyl group were observed. The calculated interatomic distances of approximately 2.2 Å between vinylic H_a and C(14)-H, and 2.6 Å between vinylic H_a and α C(16)-H are consistent with the observation of strong ROESY correlations. On the basis of the comparison with the known stereochemistry at carbons C(8), C(13), and C(14), the stereochemistry at C(17) of **14a** was assigned as shown in Figure 2.

The CuI-catalyzed cyclization of 4a was also tried by using dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as the solvent, but this resulted in decomposition of 4a (Table 1). Only a small amount of desired product 14a was detected in the reaction mixture. After further optimization, it was found that treatment of 4a in a 1:1 mixture of benzene and Et₃N at 90 °C in the presence of 10 mol % of CuI led to rapid cyclization (30 min) to produce 14a in 97% yield. Lowering the temperature to 40 °C gave **14a** in only 46% yield even after 24 h of reaction time. This cyclization could also be catalyzed by other transition metal salts such as Pd(OAc)₂ and AgNO₃ with acceptable yields. However, when HgCl₂ was used as a catalyst, only a 9% yield of **14a** was realized. The optimal cyclization conditions thus far developed employ 1 equiv of the substrate 4a (0.2 mmol) and 10 mol % of CuI in 1:1 benzene-Et₃N (4 mL) at 90 °C.

By employing this protocol, a number of steroidal acylaminoacetylenes $4\mathbf{b} - \mathbf{j}^{23}$ were cyclized to give the corresponding spiro-oxazoles in moderate to good yields (Table 2). Generally, the cyclization of acetyl and propionamides was completed within 1 h to give the corresponding spiro-oxazoles in 83–93% yields. In the case of formyl and trifluoroacetylamides, the cyclization products were isolated in moderate yields (40–60%) with incomplete conversion of the starting material. Use of longer reaction times to consume all the starting material led to decomposition and lower yield of the cyclization product. We believe that a reasonable mechanism for this copper-catalyzed cyclization of terminal acetylenes involves CuI coordinating to the carbon—carbon triple bond to form a copper—acetylene π complex.²⁴ followed by Et₃N assisted intramolecular nucleo-

Org. Lett., Vol. 9, No. 10, 2007

⁽²¹⁾ Tohda, Y.; Sonogashira, K.; Haghiara, N. *Synthesis* **1977**, 777. (22) The reaction temperature was given as the temperature of the heating bath.

⁽²³⁾ The steroidal acylaminoacetylenes ${\bf 4b-j}$ were prepared following the similar synthetic route in Scheme 1.

Table 2. Syntheses of 11β -Aryl-17,17-spiro[(4'H,5'-methylene)oxazol]-Substituted Steroids^a

product	Ar	R	$\%$ yield b
14b	3,4-difluorophenyl	CH_3	91
14c	3,4-difluorophenyl	CF_3	45
14d	4- $(N,N$ -dimethylamino)phenyl	$\mathrm{CH_{2}CH_{3}}$	93
14e	4-(N,N-dimethylamino)phenyl	CH_3	91
14f	4- $(N,N$ -dimethylamino)phenyl	CF_3	63
14g	4- $(N,N$ -dimethylamino)phenyl	H	38
14h	4-acetylphenyl	$\mathrm{CH_{2}CH_{3}}$	85
14i	4-acetylphenyl	CH_3	83
14j	4-acetylphenyl	H	40

 a All reactions were carried out under the optimal conditions reported in the text. b Isolated yield.

philic attack of the oxygen of the amide moiety on the activated carbon-carbon triple bond.

The prepared steroidal spiro-oxazoles **14a**—**j** are stable at room temperature. However, they are readily hydrolyzed upon treatment with harsher conditions (e.g., refluxed in MeOH). When **14a** was heated in refluxing MeOH for 16

h, the hydrolysis product 17α -acetyl- 17β -propionylaminosubstituted steroid **15** was obtained in 96% yield (eq 2).

In conclusion, we have established an efficient coppercatalyzed cyclization of steroidal acylaminoacetylenes to give the corresponding 11β -aryl-17,17-spiro[(4'H,5'-methylene)-oxazol]-substituted steroids in moderate to good yields. The corresponding 17α -acetyl-17 β -acylamino steroids were then obtained by hydrolysis. The hormonal properties of these novel steroids will be reported separately.

Acknowledgment. This work was supported by the R. W. Johnson Pharmaceutical Research Institute.

Supporting Information Available: Experimental procedures and characterization data for the reported reactions, NMR assignments of **14a**, and NMR spectra of **4a**–**j**, **14a**–**j**, and **15**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070447D

(24) Macomber, D. W.; Rausch, M. D. J. Am. Chem. Soc. 1983, 105, 5325.

1890 Org. Lett., Vol. 9, No. 10, **2007**